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and u and v are equal to 

v 2 = [(1 + 4ABt2) I/2 - 1]/2A, 

u 2 = [(1 + 4ABt2) 1/2 + 1]/2B. 
(30) 

The optimal c~ and/3 values can be calculated then as 

o t=  v/u,  f l =  1/u 2. (31) 

In the vicinity of  u = B -l/z,  v = O, 

Q(u, v) = ( -  lnB - 1) - 2B(u -- B-I/2) z 

+ (I-2/B)v 2 + . . . .  (35) 

so if ~ < 0 this point is the maximum point, but if 
> 0 this is a saddle point and the maximum is attained 

at a point corresponding to the nontrivial solution of  
G(t) = 0. 

A2. Mathematical analysis 

We exclude from the analysis the singular case when 
there exists a scale factor ). such that Fi °bs = 2F~ °~ for all 
the reflections, i.e. the model is ideal. 

The function G(t) is even, so we can consider it for 
t > 0 only. 

It is easy to see that G(t) - 0 always has the trivial 
solution t -- 0, i.e. v = O, u -- B -i/2 or a = 0, t5 = B. 

Using asymptotic formulae for the modified Bessel 
functions, we can obtain, for small values of  t, 

G(t) = - 2 ( D  - AB)t 2 + O(t 4) for  t ---> 0 (32) 

and, for large t, 

l im(1 / t )G( t )  = 2[(AB) !/2 - C ] .  (33) 
I---+ O0 

The value of  (AB) 1/2 - C is always positive owing to 
Cauchy inequality, so G(t) = 0 has at least one nontrivial 
solution if the value 

I2 = D - AB (34) 

is positive. 
It is possible to show, too, that the function Q(u, v) 

tends to - o ~  when the point (u, v) tends to infinity. So, 
the maximum value is attained at an inner point. 
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during scattering in multifaceted convex crystals is de- 
veloped in a way that permits efficient computation. 
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A fast and accurate algorithm is given for finding the 
Howells polyhedra whose determination is fundamental  
to the analytic method. The algorithm allows for the 
evaluation of  cases when the sample is only partly 
illuminated, can be adapted to more general situations 
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and can be used to generate an estimate of the error in 
the computation. In most cases this is to 1 part in 1014. 
Results of standard tests are given to greater accuracy 
than previously available and results for multifaceted 
approximations to a cylinder and a sphere are given to 
illustrate the power of the method. 

Introduction 

The method described here for calculating absorption 
during scattering has been developed for X-ray scattering 
by polyhedral single-crystal samples. It applies equally, 
however, to any homogeneous material whether amor- 
phous or crystalline, to elastic neutron scattering from 
moderately sized samples or to other weak scattering 
processes. Moreover, since a cylinder or sphere can be 
approximated by a many-sided polyhedron, the method 
can also be used to give results for these and other shapes 
that are not intrinsically polyhedral. 

Although the mathematical techniques have general 
applicability, it is in the context of X-ray scattering 
that attempts have been made for over forty years to 
solve the problem of the calculation of absorption during 
scattering. The most popular method of calculation is to 
use Gaussian integration over a three-dimensional grid 
(Busing & Levy, 1957). This method is not particularly 
rapid with fine sampling and only achieves good accu- 
racy for small absorption coefficients, #. With a large 
absorption coefficient, much of the absorption comes 
from only a small part of the total sample volume, which 
is consequently inadequately covered by a Gaussian grid 
of workable density spread over the whole sample. 

It was pointed out by Howells (1950) that the ab- 
sorption could be calculated analytically for a two- 
dimensional polygonal crystal. Howells's method was 
not particularly suited to implementation by computer 
but the areas into which the crystal was divided became 
known as Howells polygons and, by extension, the corre- 
sponding volumes in three dimensions became known as 
Howells polyhedra. Howells's two-dimensional division 
of a crystal formed the basis of the method described 
by Braibanti & Tiripicchio (1965) but their division of 
a three-dimensional sample into two-dimensional slices 
was immediately superseded by a full three-dimensional 
treatment by de Meulenaer & Tompa (1965). This treat- 
ment, involving the subdivision of the Howells polyhe- 
dra into tetrahedra, has been the basis of all subsequent 
work, including that by Alcock (1970, 1974) and Blanc, 
Schwarzenbach & Flack (1991). It has been used in com- 
parisons between analytical evaluations and numerical 
methods, notably by Alcock (1974) and Flack, Vincent 
& Alcock (1980). 

Clark (1993) reconsidered the calculation of the ab- 
sorption ab initio and established a formula for the 
evaluation of the transmission factor dependent only on 
the edges of the Howells polyhedra. In this paper, the 
methods described by Clark are analysed in greater detail 

and computational considerations included. In order to 
maintain high accuracy, we pay particular attention to the 
special cases where the denominators in Clark's formula 
tend to zero. It turns out that the simplest way of dealing 
with these special cases is to use expansion formulae 
similar to those worked out by Blanc, Schwarzenbach 
& Flack (1991). The links between the two methods are 
established in the next section. 

In this paper, we use the method suggested by Clark 
(1993) of defining the Howells polyhedra in terms of 
the included volume within a given set of planes. We 
develop this concept and show how it can be used 
to generate the Howells polyhedra rapidly and simply. 
Any exact computational method requires the finding 
of the vertices and edges of each Howells polyhedron 
and it is this time-consuming process that causes exact 
calculations to be underused. A special algorithm has 
been devised that steps sequentially around the edges 
of each of the polyhedra and evaluates the appropriate 
contribution to the transmission coefficient and other 
formulae as each edge is found. The process is made 
efficient by minimizing the number of planes required 
to define each polyhedron and also by minimizing the 
number of polyhedra that have to be checked. In the 
second section of this paper, the computational method 
is described. 

We believe that the speed and accuracy of the process 
described here tips the balance strongly in favour of 
exact calculation of X-ray (and other) absorption factors. 

Mathematical analysis 

The transmission factor T of a convex polyhedral crystal 
completely bathed in X-rays is defined by 

T :  V -1 f exp ( -#L)  dV, (1) 
v 

where the crystal volume V is subdivided into Howells 
polyhedra. The subdivision of a crystal into Howells 
polyhedra (see Fig. 1) is a division into volumes within 
which the total path length L of the ray scattered at a 
point with coordinates r varies linearly with position. 
Thus, within any Howells polyhedron, L(r) obeys the 
general relation 

L(r) = a .  r + c, (2) 

where a is a constant vector and c a scalar constant. [For 
any particular polyhedron, the values of a and c can be 
deduced from equation (14) below.] 

Clark (1993) showed how to reduce the integral over 
each Howells polyhedron to a sum over its edges by 
using Gauss's and Stokes's theorems. The method Clark 
described can be applied to integrals of any function of L 
over polyhedral volumes. In effect, Clark established the 
result that, if ~,(L) is any thrice differentiable function 
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of L and V is a volume within which (2) holds, then 

f (d3¢ /dL  3) dV = ~ a-2[(nk • a)/Ink × al e] 
V k,j 

X [nk,  a ,  d j ] ( ¢ j + l  -- e j ) / ( a . d j ) .  

(3) 

The sum over k is over all faces of the polyhedron 
and the sum over j is taken over all edges of each face. 
The vector nk is the unit vector normal to face k. We 
have written Cj for ¢ ( L ( r j ) ) ,  the value of ~ at r j ,  
and numbered the vertices so that r j  and r j + l  are the 
position vectors of the vertices at the beginning and the 
end of edge j ,  respectively. The symbol [a, b,  c] is the 
triple scalar product a x b . e ,  a = lal and the vector 
d j  is defined by d j  = r j+ l  - r j .  In the usual way, 
all edges round a face are traversed anticlockwise round 
the outward going normal, nk, to that face. We note that 
a .  d j i s  the difference between the values of L at the 
ends of edge j .  

The cases when Ink × al, lal or a .  d j  are small 
but non-zero require special evaluation. The last two of 
these can easily be handled by a Taylor-series expan- 
sion but the first requires more careful analysis. Blanc, 
Schwarzenbach & Flack (1991) have shown how to treat 
the equivalent situation that occurs when path lengths 
through the vertices of a tetrahedron become equal. 
Establishing the connection between their method and 

reversed scattered beam dwectlon 

H f 

,nodenf beam O~ / "/ 
d,rect,on / " ~  - - -  7.'~" j . . . . . . ~  5 

B 

@ 
Fig. 1. The incident beam illuminates the crystal along direction t l 

through faces ABCD and ADHE. Scattered radiation leaves in the 
direction --t2 through faces EFGH and ADHE. The transmission 
factor T for a convex polyhedral sample is evaluated by dividing the 
sample into Howells polyhedra, for each of which the incident beam 
and the reversed scattered beam enter the sample through a single 
face. The shape illustrated is divided into four Howells polyhedra, 
shown in exploded view below. 

our equation (3) gives insight into both formulae and 
leads to a form that is simple to use. Hence we now show 
how to remove the cross product from the denominator 
of equation (3). 

We can rewrite (3) as 

f ( d3¢ /dL  3) dV = E a-2[(nk • a ) / [nk  × al2](nk x a) 
V k 

[ ~ dj(¢j+l-~)j)/(a.dj)]. 

(4) 

The sum round the edges of the polygon in the final 
bracket can be re-expressed as 

Z ¢ ~ [ d j _ l / ( a .  d j _ l )  - d j / ( a -  dj)]  
J 

= > - ~ { ¢ i / [ ( a . d j ) ( a . d j - 1 ) ] } a  × ( d j - i  × d j ) .  (5) 
J 

But d j -1  × d j  = (nk" d j - 1  x d j ) n k  since all the edges 
lie in the plane with normal nk. Hence, 

f (da¢/dL 3) dV = - E a -2nk  " a[nk, d j - i ,  dj]  
V k,j 

x [ ¢ j / ( a - d j ) ( a .  d j -1)] .  (5) 

Expression (6) has eliminated the awkward denominator 
Ink × al but at the expense of introducing a sum over 
vertices rather than edges and requiring the evaluation 
of two vectors d j  and d j _ l  meeting at that vertex. It 
is computationally convenient to retain the evaluation of 
the sum edge by edge. To do this, on each face k we 
define a reference point r/~ and observe that the sum 
round the polygon on that face can be re-expressed as 
a sum over triangles whose vertices are at rk, r j  and 
r j + l  (Fig. 2). 

Let sj  be defined for each vertex by sj  = r j  - rk. 
Round each triangle, the triple scalar product in (6) has 
a constant value because, as d j  = sj+x - s j ,  we have 

[nk,s j ,  dj] = [nk, d j ,  - sj+x] 

--  I n k ,  -- S j + I ,  Sj] 

= [nk, sj, sj+l]. (7) 

I'j+ ! 

... '" j l  
. . . - "  rj 

I" k 

° " ' " - ° . . . ° . ° .  

r 

Fig. 2. Each polygonal face of a Howells polyhedron can be divided into 
a set of triangles with one vertex at rk.  Note that sj  × Sj+l  is zero 
if either r j  or r j + l  is equal to rk.  
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Also, since both sj and Sj+l lie in the plane with 
normal nk, it follows that 

n k .  a[nk, sj, sj+l] = [a, s j ,  s j+l] .  (8) 

Defining Lk = L(rk) and using a .  dj  = Lj+I - L3 
etc., we have the following expression for the integral. 

f ( d 3 ¢ / d L 3 ) d V  
v 

= Y~ a-2[a, s j ,s j+l] 
k,j 
x {[¢k/(Lk - L j ) ( L k  - Lj+i)] 

+ [ ¢ j / ( n j  - L k ) ( L j  - Lj+I)] 

+ [¢ j+ l / (L j+ l  - L k ) ( L j + I  - Lj)]}. (9) 

We have now established the link between our for- 
mulae and those of Blanc, Schwarzenbach & Flack 
(1991). Equation (9) is closely related to their equation 
(11). The differences are that (9) is an expression that 
can be used with a general ¢ (L)  and, perhaps more 
importantly, our expression requires no tetrahedron to 
be defined. It has been necessary in going from (3) to 
(9) to choose a special point, rk, on each plane but this is 
simply a book-keeping exercise. The rest of the Howells 
polyhedron does not need to be known when calculating 
the contribution from any edge. 

It is tempting to let rk be the end of the normal 
vector from the origin onto plane k. This would simplify 
the computations but we note that L will have to be 
evaluated at rk. It is sensible to take rk within or on the 
polygon on face k since then Lk will have a physically 
meaningful value. In this way, excessively large values 
of ¢ are avoided and rounding errors minimized. In 
practice, we use the first vertex found on each face as rk. 

Evaluation of the final bracketed term in (9) in the 
cases when the denominators are small can be carded out 
as described in the Appendix to Blanc, Schwarzenbach 
& Flack (1991). Building on the earlier work of de 
Meulenaer & Tompa (1965) and Alcock (1970), they 
show how Taylor-series expansions about an appropri- 
ately chosen point can be used. We use the centre point 
of edge j when Lj+t  - L j  is small, as the expansion then 
only requires even powers. As noted in earlier papers, the 
bracketed term in (9) is symmetric under interchanges of 
Lk, Lj, Lj+I so that if these are ordered in increasing 
order as L1, L2, L3 then the term within curly brackets 
can be rewritten as 

(L3-L1)-l[(¢3-¢2)/(L3-L2)-(¢2-¢1)/(L2-L1)]. 
(10) 

When L1, L2 and L3 are all approximately equal, this 
makes the expansion about the intermediate value, L2, 
particularly transparent. 

The case of small lal can be treated by a Taylor- 
series expansion about L = c and the case of small #, 

the absorption coefficient, by expanding about/z = 0.  

Convergence is verified in each case by checking that 
the first omitted term is less than 10 -18 of the first term. 
Some mathematical details are given in Appendix 2. We 
have not found it necessary to use the expression for 
¢ (L)  suggested by Clark (1993) in his equation (31). 
Instead, we use the following functions: 

for the transmission factor, 

¢ (L)  = e x p ( - / z L ) / ( - # ) 3 ;  

for its derivative with respect to #, 

( l l a )  

¢ (L)  = ( # L  + 3) e x p ( - # L ) / ( - # ) 4 ;  ( l ib )  

for the volume of any polyhedron, 

¢ (L)  = L3/6; ( l l c )  

for area integrals of e x p ( - # L ) ,  

¢ (L)  = e x p ( - # L ) / ( - # )  2. ( l id )  

Blanc, Schwarzenbach & Flack (1991) describe how 
to calculate the derivatives of the transmission factor 
with respect to the positions of the crystal face planes. 
The inclusion of the calculation of these derivatives is, 
as they point out, easily incorporated in any computer 
program as many of the relevant quantities have already 
been evaluated. It can be seen directly from (9) that the 
equivalent result for area integrals over polygons is 

f ( d 2 ¢ / d L  2) dS = ~-'~[n, sj, sj+l] 
s j 

× {[¢k/(Lk -- L j ) ( L k  - Lj+I)] 

+ [¢ j / (L j  - L k ) ( L j  - Lj+I)] 

+ [¢ j+I / (L j+I  - Lk ) (L j+I  - Lj)]} 

(12) 

and hence virtually no extra calculation is required to 
evaluate the derivatives other than the use of (1 ld) for 
¢. It is also straightforward to evaluate the mean path 
length in the crystal, T, from the formula (Zachariasen, 
1967) 

T : - ( 1 / T ) ( O T / O # ) .  (13) 

Computational errors and limitations 
on the accuracy of the method 

Computational errors may be detected by comparing the 
volumes of the Howells polyhedra calculated in two 
different ways. Firstly, the volume of any polyhedron 
may be found algebraically from its enclosing planes 
and, secondly, by using (9) and integrating over L3/6.  
We emphasize that no short cuts need be taken in 
this second calculation. Exactly the same steps are 
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made to integrate L~/6 as are used to evaluate the 
transmission-factor integrals. Every factor required in 
one calculation is also required in the other. The only 
difference being the use of (1 lc) instead of (1 la). The 
very small differences that typically exist between the 
two evaluations of the volume permit confidence in the 
evaluation of all other integrals and in the estimated 
errors. In normal situations, the volume of each Howells 
polyhedron obtained by integration is extremely close 
to that obtained algebraically from its defining planes - 
typically to 1 part in 1014. Similarly, only exceptionally 
is the difference between the volume of the crystal 
obtained directly and the volume obtained by summing 
the volumes of the Howells polyhedra other than very 
small. This difference is usually at the limits of the 
accuracy achievable, allowing for rounding errors on 
double-precision variables. This implies that, for small 
#, the transmission factor will be calculated to the same 
order. 

Where errors are found, it is because it is occasionally 
necessary to subtract two large numbers when finding the 
vertices of the Howells polyhedra. Such a subtraction 
occurs when the cross product of two nearly parallel 
vectors is required. The subsequent rounding errors may 
be crucial when determining whether a small quantity is 
zero or not. For this reason, the search algorithm may 
fail to find all the vertices of very thin or very narrow 
Howells polyhedra. All such polyhedra are regarded as 
of zero volume (i.e. eliminated because they fail Euler's 
relation) when in fact some may have a small but finite 
size. Such flat or thin polyhedra are liable to occur very 
close to special symmetry orientations of the crystal in 
the incident beam or close to special scattering angles. 
Fortunately, the double calculation of the crystal volume 
allows their omission to be readily identified and the 
error estimated. One way of avoiding these errors is to 
make a small change in the crystal setting angles or in the 
scattering angle. Because the errors arise from rounding, 
a small change in the input data, usually as small as 
a few thousandths of a degree, will remove the error 
condition and restore accurate results. 

A second limitation on the accuracy arises from the 
calculation of the path length through the crystal. The 
total path length through r along an incident-beam 
direction t l and a (reversed) scattered-beam direction 
t2 between two faces described by n l ,  D1 and n2, D2 
(when n .  r - D = 0 is the equation of a plane) is 

L = - ( n l  • r - D1) / (n~ .  t l )  - ( n g . r  - D2) / (n9 .  t2) 

(14) 

and either of the denominators n l .  t l  or n2.  t2 may 
be very small. This means that there can be significant 
multiplication of the rounding error on r. This limitation 
on the accuracy applies, of course, to all methods of 
calculating the transmission factor. It is most acute when 
the absorption coefficient is large as then the factor 
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will depend mostly on a few path lengths near the 
incident face. We have not been able to escape from this 
limitation. We note, however, that, in the configurations 
when it occurs, discrepancies between the real geometry 
of the crystal and the modelled geometry will have a 
much greater effect than normal. 

An estimate of the error in the transmission factor can 
be made by summing the difference in the two methods 
of calculating the volume of each Howells polyhedron 
weighted by exp(-#Lmin), where Lmin is the minimum 
path length to the polyhedron. In our calculation, we add 
to this estimate the difference between the total crystal 
volume and the sum of the volumes of the Howells 
polyhedra. This flags any omitted polyhedra. The total, 
divided by the volume of the crystal, is given in the 
tables in the final section as the estimated error. 

Generation of the Howells polyhedra 

Despite the fact that the analytic procedure described 
above is simpler to implement than earlier methods, it 
is the time-consuming process of finding the vertices 
of the Howells polyhedra that makes the evaluation of 
the transmission factor and its derivatives of limited 
use for crystals with more than 20 faces. By giving 
careful attention to several aspects of the search strategy 
for the Howells polyhedra and their vertices, we have 
been able to increase the computing speed by orders of 
magnitude for large many-faceted crystals. For clarity in 
what follows, we will refer to the Howells polyhedron lit 
by the incident beam through face A and also lit by the 
(reversed) scattered beam through face B as polyhedron 
[A, B] or as having indices A, B. 

The set of planes required to define each Howells 
polyhedron consists of the face planes of the crystal 
and two sets of 'lit-edge' planes. A lit-edge plane is the 
projection of a lit edge of the crystal along the relevant 
X-ray direction. The two sets required are the lit-edge 
planes parallel to the incident beam that outline face 
A, set (a), and the set of lit-edge planes parallel to the 
(reversed) scattered-beam direction that outline face B, 
set (b) (see Fig. 3). We will refer to the crystal face 
planes as set (c). 

Many of the planes in the combined set (a), (b), (c) 
will lie completely outside the desired included volume. 
It is important to reduce the number in the defining set 
to a minimum, since any intersection of triples of planes 
in the set is a possible vertex of the included volume. 
The number of such points increases as the cube of the 
number of planes. While not all these points are tested in 
the procedure explained below, it is clearly sensible to 
eliminate any unnecessary planes from the set. We note 
that, of all the crystal faces lit by the incident beam, 
only one need be included - namely the one that defines 
the Howells polyhedron, face A. Even this one need not 
be included if it is lit by the scattered beam and index 
B is not equal to A. Similarly, at most only one crystal 
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face lit by the scattered beam need be included, face 
B, and even this need not be included in many cases. 
Hence, the number of crystal face planes required in set 
(c) is just the number of faces unlit by either beam plus 
zero, one or two. Similar considerations can be applied 
to the lit-edge planes around faces A and B, sets (a) and 
(b) above. No such plane need be included unless the 
crystal edge it passes through lies between two crystal 
faces both of which are lit by the same beam (Alcock, 
1970). If a single lit edge generates two lit-edge planes, 
a simple calculation determines whether one or both are 
required. 

Having reduced the set of planes as much as possible, 
an initial vertex has to be located. This is found by 
evaluating n .  r - D for all other planes in the set when 
r is the point of intersection of three of them. The first 
points searched should be the intersections of lit-edge 
planes as the most likely planes to form a vertex of 
the polyhedron. Indeed, if any lit-edge planes intersect 
the body of the crystal then at least one face of the 
Howells polyhedron must lie on one of them. This fact 
enables us to reduce the search path for the first vertex 
considerably and speeds up the elimination of sets of 
planes that cannot generate Howells polyhedra within 
the crystal. 

The following algorithm finds the vertices of a poly- 
hedron defined by a set of planes, by stepping from 
one vertex to another round the edges until the whole 
polyhedron is encompassed. The basic method is fast and 
robust for simple sets of planes. We also describe how to 
deal with the complications that can arise when there are 
planes that are tangential to the included volume through 
one of its edges or through one of its vertices. 

Once a vertex, r l ,  has been found, all planes passing 
through rl  are listed and ordered round the vertex. The 
method of ordering is explained in Appendix 1. Also 
explained in Appendix 1 is how planes tangent to the 
Howells polyhedron at this vertex can be eliminated 
from the set. Neighbouring pairs of planes passing 
through a vertex define the edges through that vertex. 
Each edge can be labelled uniquely by the (ordered) 

t2 

.:": f !  .... / 

,, I ;  "T ; / - : : ' - , " : : := - \  
I 1// / 

Fig. 3. Any Howells polyhedron can be defined by the set of planes made 
up of the lit-edge planes of face A, the lit-edge planes of face B, the 
unlit faces of the crystal plus, at most, face A and face B. 

numbers of the pair of planes passing through it. These 
labels are passed to an edge list together with the number 
of the vertex r l ,  while r l  is itself recorded. A second 
vertex is now sought for the first edge on the edge list by 
searching for that plane whose intersection (at r2) with 
the edge is the closest to the vertex r l .  This involves only 
one pass through the set of planes. Once both ends of an 
edge have been found, its contribution to the integrals 
can be calculated and it can be eliminated from the edge 
list. 

The new vertex, rz, is now treated in the same way 
as r l .  All planes through it are found and new edges 
generated and added to the edge list. The edge list is 
checked for duplicates, since duplication indicates that 
both ends have been found. These completed edges are 
then processed and removed from the edge list. The 
procedure then repeats until the edge list is empty and, 
hence, all vertices found. 

This method reduces to a minimum the number of 
points that have to be tested as vertices of the poly- 
hedron. Apart from the first vertex, which involves a 
search that might in principle increase in proportion to 
p3, where p is the number of planes in the set, all other 
searches are in proportion to p. Clark (1993) estimated 
that the number of planes in parts (a) and (b) of the set 
will be about 12, on average, and we have shown above 
that the number required from part (c) is the number of 
unlit crystal faces plus, at most, two. 

Computing speed can also be greatly increased by 
listing neighbouring Howells polyhedra whenever one is 
found and subsequently stepping directly to these known 
polyhedra. This can be done by recording the index 
number of the neighbouring face whenever any lit-edge 
plane is generated. Then the indices of the neighbouring 
polyhedra to polyhedron [A,B] can be deduced from 
the fact that any edge of polyhedron [A, B] that is the 
intersection of two lit-edge planes must be common to 
three neighbouring Howells polyhedra. Similarly, any 
edge that is the intersection of a lit-edge plane and a 
crystal face is an edge of one other Howells polyhedron. 
By stopping searching for more Howells polyhedra when 
the total volume of the crystal has been found, very few 
sets of planes that do not contain Howells polyhedra 
need be generated. 

We note finally that if the data relevant to each edge 
are stored for any crystal orientation, no recalculation of 
the Howells polyhedra is required if only/z is changed. 
Very rapid computation of the transmission factor as a 
function of # can be produced for each orientation, a 
feature that is particularly useful in energy-dispersive 
experiments (Reid, 1993). 

Partly illuminated crystals 

Since the routine uses a set of planes to describe the 
crystal and its associated Howells polyhedra, it is a 
simple matter to include in the set of planes any that 
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define the limits of the illuminating beam. These reduce 
the number of Howells polyhedra that contribute to the 
absorption but do not change the path lengths L to any 
vertex. The path lengths are still determined by the total 
length of a ray between a crystal face lit by the incident 
beam and one lit by the scattered beam. The facility to 
include explicitly these 'beam planes' in the calculation 
of the absorption factor means that crystal mounting 
faces, for example, can be excluded. Scattering in one 
small part of a sample can also be studied. 

The inclusion of beam planes means that the definition 
of the transmission factor needs to be slightly modified. 
We redefine T to be 

T = v -1 f exp( - i zL)  dr,  (15) 
ly 

where v is that volume of the crystal in which scattering 
occurs. As remarked above, this definition does not 
affect the definition of the path length L or any of 
the mathematical analysis above. All that needs to be 
changed is the volume over which the integral is taken. 

This concept of scattering occurring in only a small 
part of the volume could be extended to more complex 
situations. The derivation of (9) depends only on the fact 
that L is linearly dependent on r within any Howells 
polyhedron. Tiros, the theory could readily be extended 
to convex polyhedral crystals with one absorption co- 
efficient contained within other convex polyhedra with 
different absorption. The expression for #L in the case 
of a crystal with absorption coefficient #1 inside an 
absorbing medium with absorption coefficient #2 would 
be changed from 

/z(a.  r + c) 

to 

~2(a2 • r + c2) + (~1 - #2) (a l  • r + cl) ,  ( 1 6 )  

where a l ,  cl are defined by the crystal planes in the 
usual way and a2, c2 are defined in a similar manner by 
the outer polyhedron planes. Each Howells polyhedron 
would then be defined by four indices instead of two but 
this would present no computational problem, since it 
would merely increase the number of planes in the set 
defining the polyhedron. The use of beam planes to focus 
on the region of interest would eliminate unnecessary 
computations. 

Tests 

We present tests of three types. First, analytic for- 
mulae for simple shapes against which any program 
can be tested. These are useful in the initial stages of 
preparation of computer programs but usually do not 
serve as complete tests because the number of Howells 
polyhedra is necessarily limited. However, the formulae 
given below are more generally applicable than earlier 

formulae (Cahen & Ibers, 1972) in that they allow for 
a wide range of polyhedral shapes, scattering angles 
and scattering directions. Secondly, we give a set of 
results for Alcock's standard irregular crystal (Alcock, 
1974) to extended accuracy. We give results for the 
derivatives of the transmission factor with respect to the 
positions of the face planes calculated both numerically 
and analytically (Blanc, Schwarzenbach & Flack, 1991) 
and finally results for polyhedral approximations to a 
cylinder and sphere to illustrate the power of the method. 

Clark (1993) published an analytic formula for the 
transmission factor applicable to any tetrahedron ori- 
ented so that it is a single Howells polyhedron with 
both the incident and scattered beams passing through 
the same face. That result is 

1 . 2 r 2  TI(L) = 6 ( G L ) - 3 [ 1 - # L + 7 / z  ~ - e x p ( - # L ) ] ,  (17) 

where L is the path length of the ray scattered at 
the 'hidden'  vertex (see Fig. 4a). This formula will 

t! 

hidden 
v e r t e x  

(a) 

( b )  

(c) 
Fig. 4. (a) A tetrahedron illuminated through a single face. The total 

path length L to the hidden vertex is shown dashed. The transmission 
coefficient is given by equation (17) in this configuration. (b) A 
polyhedron whose transmission coefficient is also given by equation 
(17). (c) A tetrahedron with two faces illuminated showing the path 
lengths L1 and L2 to either end of the hidden edge. Equation (18) 
applies in this case. 
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also apply to polyhedra of any shape which can be 
decomposed into tetrahedra satisfying the geometrical 
constraints (Fig. 4b). 

It is not difficult to see that the equivalent formula for 
a tetrahedron which again is a single Howells polyhedron 
but where the incident and scattered beams pass through 
different faces is 

T2 = [LITI(L1)- L2TI(L2)]/(L1 - L2), (18) 

where L1 and L2 are the path lengths of the two rays 
passing through the ends of the 'hidden' edge (Fig. 4c). 
This formula can also be written as the ratio of two 
determinants: 

11  1 1/ 1 1/11 I 
L2 1 L2TI(L2) I (19) 

and, while there are no other ways that an isolated tetra- 
hedron can be a single Howells polyhedron, an obvious 
extension to four path lengths gives de Meulenaer & 
Tompa's (1965) original tetrahedron formula in the form 

~ L1 L21 L31Tl(L1) / i  L1 L 2 
L2 L 2 L~TI(L2) L2 L 2 
L3 L~ L~TI(L3) L3 L~ 
L4 L24 L3Tx(L4) La L 2 

L~ 
Li  
L ~ "  (20) 

L~ 

It is easy to check that (17) and (18) are reproduced by 
any numerical program for all scattering angles within 
the given geometrical constraints. Our program satisfies 
this test. 

Alcock (1974) published a set of test results for 
an irregular crystal. We reproduce our calculation for 
this crystal in Table 1 and extend the test to both 
low and high values of #. We have given our results 
to ten decimal places because we believe for such a 
simple crystal they are accurate to at least that fig- 
ure. Double-precision arithmetic with a word length of 
64 bits was used throughout the calculations, which took 
about 15 ms per point on a Sun Sparc 10 CPU running 
at 50 MHz. We would like to emphasize how useful 
Alcock's original data are. It is, for example, possible 
to obtain results - with negligible rounding errors - 
that are completely erroneous because of an erroneous 
calculation of the direction of the scattered beam. Cross 
checks against Alcock's data eliminate this risk. 

To enable our data to be cross checked to the accuracy 
printed, we give the precise values of the scattering angle 
20 and of the angle of rotation of the crystal about the 
scattering direction ¢ (Schwarzenbach & Hack, 1989, 
1992). The values of ¢ have been taken from Blanc, 
Schwarzenbach & Flack (1991). The scattering angle 
used has been chosen to agree with Alcock's results and 
the unit-cell data and reflection indices also are as given 
by Alcock. It will be seen from Table 1 that our results 
for this crystal agree with those found by the program 

Table 1. Computed results for Alcock_' s irregular crystal; 
T is the transmission factor and T is the mean path 

length in the crystal 
The es t imated  error  is ca lcula ted  as desc r ibed  in the text. 

S u m m a r y  o f  crysta l  face  p lanes  

Plane Outward  normal  d i rec t ion  D 

1 1.00 0.00 0.00 1.00 
2 0.00 1.00 1.00 1.50 
3 0.00 -2 .00  1.00 0.50 
4 -3 .00  0.00 1.00 0.30 
5 1.00 1.00 --4.00 1.30 

S u m m a r y  o f  crysta l  data  

a (A)  b j k )  c (A) a (°) fl (°) y (°) 

10.00 i 1.00 12.00 95.80 101.31 106.80 

Es t imated  
h k 1 2 0 ( ° )  qz(°)  /z T ]" er ror  

0 l l 12.3620 149.930 0.01 0.9882881407 1.17733495460.66D-15 
1.0 0.3348808866 1.0010406886 0 . l i D - 1 4  

100.0 0.0003296617 0.0118013055 0.26D-14 
0 0 1 7.6220 185.550 0.01 0.9883252525 1.1734597148 0.32D-15 

1.0 0.3396683266 0.9784720808 0.12D-14 
100.0 0.0000799667 0.0199348568 0.77D-14 

0 0 - 1  7.6220 354.450 0.01 0.9883252525 1.1734597148 0.33D-15 
1.0 0.3396683266 0.9784720808 0.35D-15 

100.0 0.0000799667 0.0199348568 0.14D-13 
1 2 3 35.7610 179.890 0.01 0.9875170717 1.2550648079 0.90D-15 

1.0 0.3199637261 1.0142173188 0.18D-14 
100.0 0.0006227068 0.0108276575 0.12D-14 

i 2 - 3  28.0470 37.440 0.01 0.9784782245 2.1717941362 0.16D-14 
1.0 0.1679707070 1.4048239242 0.41D-14 

100.0 0.0000264975 0.0199652043 0.49D-14 
1 - 2  3 28.0590 174.450 0.01 0.9842463628 1.5856270345 0.33D-15 

1.0 0.2562736811 1.1399579320 0.96D-15 
100.0 0.0000555037 0.0199403609 0.65D-16 

1 - 2 - 3  29.0810 21.850 0.01 0.9882406846 1.1820508162 0.24D-15 
1.0 0.3357461633 0.9926506109 0.23D-14 

100.0 0.0000749679 0.0199384964 0.74D-15 
- 1  2 3 29.0810 158.150 0.01 0.9882406846 1.1820508162 0.36D-15 

1.0 0.3357461633 0.9926506109 0.14D-14 
100.0 0.0000749679 0.0199384964 0.51D-15 

- l  2 - 3  28.0590 5.550 0.01 0.9842500235 1.5848828734 0.29D-15 
i.0 0.2658348945 1.0704915076 0.17D-14 

100.0 0.0007922952 0.0105223399 0.23D-14 
- 1 - 2  3 28.0470 142.560 0.01 0.9784829264 2.1708316700 0.82D-15 

1.0 0.1773173018 1.2992022784 0.44D-14 
100.0 0.0005587167 0.0103197667 0.67D-13 

- 1 - 2 - - 3  35.7610 0.110 0.01 0.9875165229 1.2551761669 0.30D-15 
1.0 0.3174956896 1.0317538530 0.10D-14 

100.0 0.0000678768 0.0199423049 0.46D-15 

LSABS (Blanc, Schwarzenbach & Hack, 1991) to the 
smaller number of decimal places they publish. 

Derivatives of the transmission factor with respect to 
small changes in the position of the crystal face planes 
may be compared with numerical evaluations of the 
same derivatives (Blanc, Schwarzenbach & Hack, 1991). 
When calculating these derivatives, the face planes are 
assumed to make an outward movement. Hence, numeri- 
cal increases in D are positive whatever the sign of D 
(care must be taken if D is zero). We give in Table 2 such 
a comparison of results for a cylindrical crystal. Beam 
planes were chosen so that the incident beam illuminates 
only a slice of the cylinder and the derivatives have been 
computed using (15) for T. The values of the scattering 
angle and scattering direction were taken such that the 
scattered-beam direction is along the axis of the cylinder 
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Table 2. The derivatives of  T with respect to Dj for  each 
of  the crystal faces ( j  = 1 to 8) and for  the beam- 

defining planes ( j  = 9, 1 O) 

The crystal is defined in Fig. 5. The step size used for the numerical 
evaluation of the derivatives was 10 -6 added to the value of Dj for each 
plane regardless of the sign of  Dj. 

Su mmar y  of  crystal face planes 
Plane Outward normal  direction Dj 

1 0.0000 0.00~ 1.0000 1.0000 
2 0.0000 0.00013 - 1.0000 1.0000 
3 - 1.0000 0.0000 0.00(~ 0.9523 
4 -0.5000 -0.8660 0.0000 0.9523 
5 0.5000 -0.8660 0.0000 0.9523 
6 1.0000 0.0000 0.0000 0.9523 
7 0.5000 0.8660 0 .0 (O 0.9523 
8 -0.5000 0.8660 0 .00~  0.9523 

Summary  of  beam-defining planes 
9 0.13(300 i.00(O 0.0000 -0.8000 
10 0.0000 -- 1.0000 0.0000 0.9000 

Summary  of  crystal data 
Estimated 

h k 1 20 (o) ~k (°) /z T ?" error 
1 0 I 90.000 -90.000 1.0 0.077317882 2.4350314 0.15D-14 

Plane Computed  OT/SD Numerical OT/OD 
1 -0.77317882D-01 -0.77317843D-01 
2 0.00000000D+00 0.22204460D-09 
3 -0.18865970D-01 -0.18865957D-01 
4 -0.24585404D-02 -0.24585292D-02 
5 -0.24585404D-02 -0.24585293D-02 
6 -0.18865970D-01 -0.18865957D-01 
7 -0.24585404D-02 -0.24585294D-02 
8 -0.24585404D-02 -0.24585294D-02 
9 0.39303149D-01 0.39303136D-01 
10 -0.38014733D-01 -0.38014720D-01 

m 

(see Fig. 5). Note that the mean path length, T, is greater 
than but roughly equal to the height of the crystal. 

Finally, we have computed the absorption of a 100- 
sided polycylinder and a 74-sided polysphere. Table 3 
shows results for the cylinder with the scattering plane 
perpendicular to the cylinder axis. To the accuracy given, 
there is no dependence of the calculated absorption 

J T s c a t t ~  direction 

S ~ a  . ' . , .  
)'. illuminated slice 

incident beam direction 

Fig. 5. The hexagonal cylinder used to test the derivatives of T with 
respect to the face plane distances Dj .  The diagram also shows the 
use of a beam plane to restrict the illumination of the crystal by the 
incident beam to the section shown. 

Table 3. Results for  a lO0-sided 'cylinder' with lz = 1 
and cross-sectional area Jr 

20 (o) T ?" Estimated error 
0.0 0.196426 1.54521 0.15 D -  14 

10.0 0.197136 1.53674 0.31D-14 
20.0 0.199257 1.51192 0.32D - 14 
30.0 0.202740 1.46283 0.35D- 14 
40.0 0.207479 1.42271 0.34D- 14 
50.0 0.213318 1.36530 0.23D- 14 
60.0 0.220072 1.30412 0.22D- 14 
70.0 0.227537 1.24210 0.27D- 14 
80.0 0.235506 1.18148 0.21 D -  14 
90.0 0.243676 1.12380 0.23D- 14 

100.0 0.252111 1.07010 0.46D-14 
110.0 0.260326 1.02104 0.26D- 14 
120.0 0.268194 0.977019 0.27 D - 14 
130.0 0.275491 0.938388 0.40D- 14 
140.0 0.281984 0.905481 0.29D- 14 
150.0 0.287429 0.878735 0.27D- 14 
160.0 0.291577 0.858734 0.22D- 14 
170.0 0.294195 0.846212 0.27D-14 
180.0 0.295093 0.841916 0.22D-14 

Table 4. Results for  a 74-sided 'sphere' with IX = 1 and 
volume 4~'/3 

20 (o) T ]" Estimated error 
0.0 0.242502 1.324673 0.39D- 15 

10.0 0.243651 1.315127 0.18D- 14 
20.0 0.245721 1.297254 0.34D- 14 
30.0 0.248635 1.271872 0.28D- 14 
40.0 0.252576 1.238634 0.48D- 14 
50.0 0.257941 1.196774 0.58D- 14 
60.0 0.264163 1.151518 0.38D- 14 
70.0 0.270824 1.105970 0.33D- 14 
80.0 0.277754 1.061313 0.36D- 14 
90.0 0.284869 1.018334 0.39D- 14 

100.0 0.292952 0.973514 0.27D- 14 
110.0 0.300783 0.932658 0.28D- 14 
120.0 0.308085 0.896306 0.15D- 14 
130.0 0.31 4671 0.864821 0.15D- i 4 
140.0 0.320520 0.837873 0.20D- 14 
150.0 0.325753 0.814643 0.13D- 14 
160.0 0.329687 0.797323 0.18D- 14 
170.0 0.331969 0.787025 0.18D- 14 
180.0 0.332457 0.784443 0.58D- 15 

on the rotation of the multifaceted cylinder about its 
axis. The values given in International Tables for X-ray 
Crystallography (1959) are only in general agreement 
with Table 3. 

The 74-sided sphere is modelled with faces {100}, 
{ 110}, { 111 } and {pqr}, where (pqr) makes equal angles 
with (100), (110) and (111). Results are shown in Table 
4. As expected, the accuracy of representing a true 
sphere is not as good as the accuracy achieved by the 
polycylinder but is more than adequate for practical 
purposes. The figures given for scattering angles 0 and 
180 ° may be compared with the exact results for a 
perfect sphere with #R = 1, which are To = 0.242 493 
and T180 = 0.332 418. The calculation for each 20 value 
took approximately 3 to 5 s on the Sun Sparc 10 CPU. 

Concluding remarks 

It has been shown in this paper that a fast accurate 
calculation of the transmission factor can be made by 



6). In this case, it will be impossible to find a consistent 
order for the planes. However, it will be possible to 
find an initial neighbouring pair of planes, 1 and 2, such 
that [nl, n2, nk] is positive for all k > 2. If subsequent 
attempts to find an ordered set requires some nk to 
be placed between n~ and n2 then plane k can be 
identified as a tangent plane. An example using the 
planes illustrated in Fig. 6 is that both [nl, n2, n3] and 
[hi, n2, n4] will be positive, establishing planes 1 and 
2 as a neighbouring ordered pair. However, [nl, n3, n4] 
will be negative, indicating that the order should be 1, 
2, 4, 3. A check of [n2, n4, n3], however, will show that 
this is also negative and hence plane 4 is a tangent plane. 
Similar considerations apply to planes that are tangent 
to an edge rather than a vertex (Clark, 1993). 

combining the formalism originally proposed by de 
Meulenaer & Tompa (1965) and subsequently developed 
by Alcock (1970) and by Blanc, Schwarzenbach & Flack 
(1991) with the more general analysis made by Clark 
(1993). It is slightly ironic that the simplest equation 
to use for calculating the transmission factor [equation 
(9)] turns out to be one that could have been very 
easily derived by converting the volume integrals into 
surface integrals by the use of Gauss's theorem and then 
using de Meulenaer & Tompa's formula [equation (12)] 
applied to a plane area to perform the surface integrals. 
This procedure avoids the subdivision of polyhedra into 
tetrahedra, replacing it with the much easier subdivision 
of polygons into triangles. 

In addition to the mathematical development, this 
paper has outlined an algorithm that speeds up the 
searches for the vertices of the Howells polyhedra sig- 
nificantly. A detailed description of the program will 
be submitted to Computer Physics Communications. We 
note that with this program it is feasible to study 
crystals with 100 faces or more. A significant addition, 
too, is the automatic calculation of the estimated error 
in the calculation. This allows ready identification of 
the special crystal configurations that give numerical 
inaccuracies. On a multifaceted crystal, it is impossible 
to predict when these might occur but, as a very small 
change in the configuration usually eliminates the errors, 
they are easy to correct. 

Finally, we have presented test results to a higher 
accuracy than previously given in the literature. We 
believe these will be useful both to those already using 
absorption correction programs and to those who may 
develop new code in future. 

APPENDIX 2 
Small a or # 

For com__pleteness, we give the expansions required for 
T and T in the small a or # cases. In both cases, we 
need to evaluate 

F ( a , # )  - a - 1  { [ ¢ I / / ( L 1  - L2)(L,  - L3)] 

+ [¢2/ (L2  - L1)(L2 - L3)] 

+ [ ¢ 3 / ( L 3  - L1)(L3 - -  L2)]}, 

where for T we have 

~,(L) = ( - # ) - 3 e x p ( - # L )  

and for T 
APPENDIX I 

The ordering of a set of planes round a vertex is based 
on the observation that any three non-coplanar vectors 
a, b, c form a right-handed set if the triple scalar product 
[a, b, c] is positive. This can be extended to N non- 
coplanar vectors nl, n2, n3 . . . . .  nN. These will be ordered 
if [ni, nj, nk] > 0 for all i, j, k in the range [I, N] and 
i < j < k .  

While such an order must exist for any three non- 
coplanar vectors, it does not have to exist for any N 
vectors where N > 3. However, if the ni are normals 
to a set of planes that pass through a common point, 
then the existence of such an order implies that the set 
of planes will have a common included region beneath 
them. If there is no single pair (nl, n2 say) for which 
[nl, n2, nk] is positive for all k > 2 then there is no 
included region beneath that set of planes. 

Difficulties arise when there exist planes that are 
tangent to the included volume, in the sense that they 
pass through the vertex, but every point on them apart 
from the vertex is excluded by another plane (see Fig. 

nl 

¢(L)  = ( - t t ) - 4 ( # L  + 3)exp(-/zL) 

and L = a - r + c .  
Define ~ by a • r = aw. Then re-expressing F(a, #) 

in terms of w and expanding in a Taylor series about 
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Fig. 6. Except for point A, all points on the tangent plane (plane 4) are 
excluded by planes 1, 2 or 3. 



R. C. CLARK AND J..S. REID 897 

a# = 0 gives the required expansion in each case. For algorithm Sn = w3S._1 + T., Tn = w2Tn_l + Un, 
T, U,~ = wlUn-1 with So = To = Uo = 1. 

o o  

F ( a , # )  = exp(- t tc)  E [ ( - -a i r )n - i~ (  n "4- 2)!] 
r t = l  

X Sn  (031, 032, 033), 

m 

and for T, 

F ( a , u )  = exp(- tw){  l cS1(031,w2,033) 
o o  

+ a E [ ( - a " ) " -~ / (  n + 2)!](-#c + n - 1) 
! r t ~ 2  

X Sn(031, 032, 033) } . 

In these expressions, Sn(wl ,  w2, w3) is the fully symmet- 
ric function of order n of three variables; i.e. $1 - -  o 3 1  "4- 
032"+-033, $2 : 032 +032+0323+031032+03303 1.31_032033 etc. Sn 
can be generated rapidly for any n by using the simple 
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Abstract 

The results of a theoretical analysis of the influence of a 
high-frequency standing acoustic wave on the angular 
spectrum of a diffracted beam in a perfect crystal are 
presented. The rapid suppression and modulation of the 
intensity at the center of the diffraction pattern are found 
for the first time. The characteristic duration of this 
modulation is many times smaller than the period of the 
acoustic wave. These effects can be used for the 
suppression and modulation of a highly collimated 
monochromatic beam of synchrotron radiation. 

Introduction 

The influence of the acoustic waves (AW) on the 
diffraction of X-rays and thermal neutrons in single 
crystals has been considered by many authors (e.g. 

Spencer & Pearman, 1970). Depending on the ultrasonic 
AW frequency, a distinction can be made between two 
different mechanisms. At k s << Ak 0 (Ak 0 = 2rr/r, r is 
the extinction length, k s is the wave vector of the AW), 
the ultrasound deformations simply expand (in general) 
the Bragg-angle scattering interval [for a more detailed 
analysis see Kulda, Vrana & Mikula (1988), Lukas & 
Kulda (1989), Mikula, Lukas & Kulda (1992)]. A high- 
frequency ultrasonic AW with k s > Ak o mixes the states 
corresponding to the different sheets of the dispersion 
surface (K6hler, M6hling & Peibst, 1974). Such a mixing 
leads to a number of effects, e.g. resonant suppression of 
the Borrmann effect (Entin, 1977), a new PendellOsung 
determined by AW (Iolin & Entin, 1983); Entin & 
Puchkova, 1984; Iolin, Zolotoyabko, Raitman, Kuvaldin 
& Gavrilov, 1986). In general, AW increases the integral 
intensity I h of the diffracted beam in perfect crystals and 
leads to decreasing I h in slightly deformed single crystals 
(Iolin, Raitman, Kuvaldin & Zolotoyabko, 1988). 
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